
Introduction
When the fully-coherent slow datamode EbNaut
[1] started to appear on the LF bands a few years
ago, users had to be able to receive and record off-
air signals that would remain stable in phase to
less than a quarter of a cycle over a duration of an
hour or more. At 137kHz, a quarter of a cycle over
two hours requires a frequency accurate to 34µHz
with a long term accuracy better than 2.5x1010.
The latter requirement is easily met by locking
the receiver and all frequency converters to a
common-or-garden GPS-disciplined oscillator or
a rubidium standard. The absolute accuracy can
be sorted out in software using FFT techniques on
a wider bandwidth. The weak point is capturing
and storing the signal – typically as an audio tone.

A PC soundcard seems the obvious choice
to record such waveforms out of a receiver, but
now everything falls apart. The sampling clock
in most soundcards is usually defined by a low-
cost crystal oscillator, with a typical accuracy
of perhaps 20ppm (parts-per-million), which
translates directly to a sampling rate error. An
error of 20ppm on a 1kHz tone is 0.02Hz – that’s
20,000µHz – and while this would normally
go unnoticed by most users, here it makes a

complete mockery of the micro-hertz accuracy
needed for EbNaut.

The users of EbNaut devised a workaround
to cope with this issue. They used a customised
version of the SpecLab software [2] that phase-

locked, purely in software, the one pulse-per-
second (PPS) signal from a GPS receiver fed
into one channel of a stereo soundcard. The
frequency-converted receive waveform went to
the other channel. SpecLab could now generate

Coherent ADC

34 January 2021

Technical

PHOTO 1: 1kHz sampling hardware. There’s an extra opamp gain stage in this version (on the small
PCB). An internal, switchable, 10MHz oscillator has also been added for non-critical tests when an
external reference is not available.

A0

A1

A2

A3

A4

B0

B1

B2

B3

B4

B5

B6

B7

Gnd
MCLR

CKOUT

CKIN

Vcc

74HC04

330k

0µ1

27k

27k

In Out

Gnd

LM3480
0µ1

0µ1

+
+2.5V

+V

10MHz
clock in

1 2

0µ1

330k
+2.5V +V

10n

680Ω
200Ω

43k0µ1
10k

1kHz
CF in

+5V

10n

330k
+2.5V

10n

680Ω
200Ω

43k

10n

330k
+2.5V

10n

680Ω
200Ω

43k

10n

300Ω 300Ω

150Ω

R G 51Ω

51Ω

RS422

-

+

+5V

SP485

1

2

3

6

7

8

9

10

11

12

13

4

5

14

15

16

GPS 1pps in

GPS NMEA in

TTL serial data out

In-circuit
programming

1
2

3 4

11

12

13
841

9

10

+5V

1
2

3
4

5 6

78

FIGURE 1: Circuit diagram of a 1kHz digitiser for high stability coherent communications and testing.

A 1kHz sampling A/D converter for
low rate LF data modes and frequency stability testing

January 2021 35

Feature

a pseudo sampling clock locked to GPS and then coherently downconvert
the audio input to a narrow baseband I/Q signal at a sampling rate in the
region of a few Hz. Another novel quirk was added that allowed the user to
timestamp each recording; in addition to recording the PPS signal on one
soundcard channel, the NMEA data stream from the GPS receiver could be
fed in as well. This somewhat unorthodox route required a special version
of SpecLab to decode the stored digital stream as well as separate out the
1 PPS bits and do the phase locking – but it did allow a number of users
to use the EbNaut suite without having to build any additional hardware.

The resulting I/Q samples were stored as floating point values in a
customised file that, somewhat amusingly, was given the .WAV file extension
and even – sort of – followed the rules for such files with regard to metadata
and headers. The EbNaut receive software worked on these pre-stored low
data rate samples to extract the really, really, ultra-weak signals buried in
there. The time stamp was reflected in the file name – all automatically
generated. I shall refer to these as ‘pseudo-wav files’.

Alternative solution
I never got on with SpecLab (a purely personal issue, mainly down to
its complexity and ‘feel’; other people love it for its flexibility and utility)
so I wondered what other alternatives were possible to generate a fully
compatible pseudo-wav file. Back in the early days of 73kHz experimentation
in the late 1990s, Peter, G3PLX had suggested to me a way that a PIC
processor with internal A/D converter could be used to simultaneously digitise
and downconvert a narrow received waveform centred on 1kHz. The output
would be a 1kHz sampled baseband I/Q data stream sent to a PC using
the serial or COM port. The only proviso was that the input frequency band
must be filtered to keep it within the range 750 – 1250Hz to avoid alias
products. This filtering requirement was easily met by using a 300Hz CW
filter in the receiver and setting the BFO tone to 1kHz. Sampling rate and
stability is now purely a function of the processor clock, which would be a
quality crystal oscillator or master frequency standard. There was no need to
rely on uncertain PC timing; the PC just takes serial words when they arrive.

In those days the only suitable PIC processor was the 16C71, which
had an 8-bit A/D converter and a maximum processor clock speed of 5MHz
(lower cost versions only offered a 1MHz clock), but either was more than
adequate for the scheme Peter suggested. It works like this:
• In a software loop, digitise the input waveform at 4kHz, thus generating

four samples for every one sent at 1kHz. Label these four samples S1, S2,
S3 and S4, whilst moving the previous value of S4 to variable S4_Last

• Calculate two values, I = S1 + S2 – S3 – S4 and Q = S1 – S2 – S3
+ S4_Last

Since each 4kHz sample gives an 8-bit result from the A/D conversion,
adding these means the resulting I/Q pair each take on a 10-bit value. What
we have done is to effectively multiply each block of four samples by one
cycle of a quadrature square wave at 1kHz. Taking the signs of the samples
in the sums above as ±, the following illustration makes it a bit clearer,

Andy Talbot, G4JNT

andy.g4jnt@gmail.com

showing four cycles of the effective quadrature local oscillator (LO):
++--++--++--++-- and
+--++--++--++--+

Multiplying an audio or RF input by a digitised I/Q LO to get an I/Q
baseband output is a standard technique in any SDR to bring the centre
frequency down to DC. Because we are generating the result at a 1kHz
sampling rate means, from Nyquist, our maximum bandwidth can only be
half this, or 500Hz. Hence the 750Hz – 1250Hz limit. Reducing four 8-bit
samples to one single 10-bit one at a quarter the original sampling rate gives
another 6dB of dynamic range over that available from the raw digitisation,
a direct result of down-sampling from 4kHz to 1kHz.

In those days internal COM ports were standard in PCs. The highest
speed these could run at was 115200 baud – quite adequate to send several
bytes of data 1000 times per second to a PC for further processing. The total
frame length to send four bytes using stop-start signalling at 115200 baud
is less than 400µs, so there was plenty of leeway at 1kHz sampling. 20 bits
needed to be transmitted in a frame that would allow for 32, so each pair was
split into five bits, allocated to each of the four bytes. The remaining three
bits in each byte were set to different fixed header values so the receiving
software could quickly identify each one and recombine them properly.

I built a digitiser using this technique and used it for a number of early
DSP and coherent receiving experiments, but it was subsequently put on
one side and forgotten when soundcards became ubiquitous.

An updated version
The need for a highly stable converter with time stamping for EbNaut was an
ideal opportunity to bring this design up to date. Improved PIC devices now
included 10-bit A/D converters on the chip and higher processor clock rates.
10-bit A/D conversion meant the I/Q output samples would now have 12-bit
resolution, giving a 12dB dynamic range improvement over the old design.
In spite of there now being a whole range of modern dsPICs and advanced
16-bit devices to choose from, all the requirements for an upgraded digitiser
could be met with a basic 16F819 PIC processor. This is itself a bit long in
the tooth now, but perfectly adequate; it’s an 18 pin device costing less than
£2 (of which I already had more than a few), with plenty of existing code
written to just drop in and go.

Internal COM ports on PCs are rare nowadays, but USB serial interfaces
such as the FTDI-Chip FT232 device are commonplace and can offer much

FIGURE 2: Frequency response of the input bandpass filter.

FIGURE 3: Off-air reception of the DCF77 time signal on 77.5kHz over the
period of sunset. Propagation-induced phase and amplitude shift is clearly visible.

36 January 2021

Technical

higher signalling speeds than the 115200 baud limit on the old RS232
ones. There is also no need for the messy ±12V signalling of RS232. The
interface to the PC can be, to all intents and purposes, a USB one. Adopting
the 16F819 did mean, though, there was no internal UART available to
generate output data. So this would have to be generated by bit-banging in
the same way as was done for the twenty-year-earlier design. It also meant
a baud rate significantly greater than 115200 would not be possible; but
that is more than fast enough.

As well as digitising the 1kHz-centred input and forming the I/Q data
values, the new version also had to take a 1 PPS signal, together with NMEA
time and date from a GPS receiver and merge this into the output stream
along with the samples. All this meant some ingenuity would be needed
in the format of the output data stream to ensure data slippages and errors
in the interface could be easily recovered. The processor clock input would
come from a 10MHz master frequency reference oscillator, resulting in a
2.5MHz internal processor clock rate; significantly faster than the original
version. so allowing more processing to be done on each sample if needed.

Comms protocol and time tagging
The IQ Data appears every 1ms as two twelve bit numbers whose
individual bits are labelled here:
IIIIIiiiiiii and QQQQQqqqqqqq

These are split into four 8-bit bytes, each pair containing respectively 7
and 5 bits of the I or Q value. Header bits are added to make up a complete
byte in each case, and these transmitted on the serial interface sent in this
format and order:
0iiiiiiii 100IIIII 0qqqqqqq 101QQQQQ

The receiving software knows that any byte with a leading 0 contains
the lower significant bits that will be appended to the next one(s). A byte
starting ‘100’ is defined as the high order bits of the I data, is merged with
the previous one and forms that value. The same applies for the Q data when
a byte beginning with the pattern ‘101’ appears. Thus, if any data slippage
or fail should occur, there is enough information in each frame of four bytes
to recover immediately.

Time tagging is added to this in the form of extra bytes transmitted every
second, ie once in every 1000 samples. As the PIC code already contains a
timing function controlled from a high accuracy reference clock, it would be
frivolous to waste time and effort continuously reading the GPS data stream
every second. Instead, the GPS date and time is read once at turn-on and
stored; this value is then updated every second in the PIC firmware by a
clock / calendar routine synchronised at the start to the 1PPS signal from the
GPS. Once internal timekeeping is synchronised the GPS receiver becomes
redundant and could, if desired, be turned off to save power.

FIGURE 5: Comparison of the 10MHz from a commercial GPS Disciplined
oscillator with that derived from a caesium beam frequency standard.

Every second, synchronised to the UTC seconds epoch, the binary values
for the time and date are transmitted as additional bytes just after the Q data
has completed. In total, a block of six additional bytes needs to be sent every
second for the full epoch, but these have to be spread out to keep the total
number of bytes within any 1ms frame down to 8 or fewer.

The first part of the additional data contains binary values for UTC
seconds, minutes (shown as ‘n’), hours and the day of the month, coded as:
00ssssss 00nnnnnn 000hhhhh 111ddddd

Once again, a byte beginning with a ‘0’ has no meaning on its own. The
‘111’ header on the final byte of the four indicates to the receiving software
this is the first part of a time stamp and has to be combined with the
preceding three. This block of four is sent immediately after the UTC seconds
epoch. 32ms later two more bytes are appended at the end of a frame of Q
data, containing binary values for the short-year and month in the format:
0yyyyyyy 1100mmmm

The ‘110’ header is the unique label for this frame. So now the receiving
software can determine each sample to a time resolution of 1ms from UTC
/ GPS time and can get a timestamp update within one second of acquiring
the data stream. Any sample with the first part of the time tag (header ‘110’)
sits at the 0.000 seconds of the time/date epoch coded within the next few
blocks. Knowing this, the exact timing of each sample can be determined
to 1ms precision.

Hardware
Figure 1 shows a circuit diagram of the complete digitiser shown in Photo 1.
Apart from the PIC doing all the work, there is a bandpass filter to limit the
audio bandwidth going into the A/D converter and a driver for RS422/485
twisted pair, described later. A dual colour LED driven from the PIC allows
the input level to be set correctly, showing when overload or A/D clipping is
about to occur. It also shows if the reference is not connected at turn on by
lack of illumination when power is applied. A flash pattern indicates that no
GPS data or PPS is being received. NMEA data and the 1PPS come from
a separate GPS/GNSS module, not shown, which can be either external to
this unit or built into the same hardware.

A three-stage opamp bandpass filter limits the amplitude of frequencies
outside the alias band. This also provides a useful amount of audio gain,
allowing input signals of a few hundred mV to get to full scale on the
ADC. Figure 2 shows the simulated response of this filter with all three
stages tuned to exactly the same frequency. As the unit is designed for low
bandwidth modes of perhaps just a few tens of Hz, the response does not
have to be too carefully tailored and the three stages can simply be tweaked
for something approaching what is needed. Stagger-tuning will widen the
response if desired, at the expense of lower out-of-band rejection. As can

FIGURE 4: Narrowband frequency spectrum from the DCF77 transmitter
showing spectral components due to the one-minute timeframe.

Feature

January 2021 37

be seen from the simulation, rejection at the edge
of the alias band is around 40dB worst case,
increasing monotonically beyond this. Since, in
practice, only frequencies a few tens of hertz
either side of 1kHz centre will be of interest
for experiments or modes using this interface,
alias products falling into this wanted region
around 1kHz would have to be at 2kHz, 3kHz
etc, where attenuation is considerably higher. If
the audio input is derived from a receiver with a
narrow CW filter, the opamps can be dispensed
with and audio applied directly to the PIC input,
biased to centre rail, via a gain-stage if necessary.
The nature of the summation of the four A/D
values means that any DC offset is automatically
removed on the final value, so the mid rail voltage
does not have to be trimmed too precisely.

Computer interfacing
The RS232 interface used on the original version
with its need for ± voltage signalling is not being
considered here. The simplest solution now is
to connect the data output pin from the PIC
directly to the serial input of an FT232R chip, or
whatever USB COM port device is chosen. A direct
connection, however, is not the best solution. USB
connections are not all that electrically quiet and
frequently conduct unwanted RF signals from the
PC chassis to the target, either differentially along
its unbalanced 5V DC supply, or by common
mode injection.

A better solution, shown here, is to adopt
differential signalling on twisted pair using
RS422/485 levels. The USB connection to the PC
(now a RS485 USB module) is plugged directly
into the PC, keeping its interference at home.
Having no common connection or ground, the
twisted pair cannot introduce ground loops and is
immune to common mode interference in either
direction. Furthermore, it is easy to add filtering
to reject common mode RF signals by wrapping
several turns of the thin twisted pair around a
suitable ferrite toroid.

For an even more interference-free connection,
an optical fibre based solution could be adopted,
or an RF one using low cost 432MHz modules.
Such interfaces could be considered if the digitiser
were used as a remote receiver in a quiet location,
well-away from local electrical noise sources.

PC software
With a customised interface such as this, bespoke
software is needed to receive and decode the
serial data stream. COM ports are well supported
in all computer languages and are usually easier
to drive and set up than any other I/O mechanism.
Software at [3] written in VB6 contains a package
that will read the data stream and extract the 1kHz
I/Q samples and time stamp. The signal is filtered
and decimated by a user defined value between
4 and 4096 to give an I/Q steam at a sampling
rate that can go down to 0.244Hz. A frequency
offset (any arbitrary floating point value) can be

added to the signal before decimation to allow, for
example, a receiver limited to 1Hz tuning steps or
the error introduced by a low resolution DDS used
as a receiver’s LO to be corrected. The resulting
slow rate I/Q data can then be saved as time-
scheduled pseudo-wav files, automatically named
from the time stamp, in the format required by
the EbNaut receive software. Vector displays
of the raw input and the resampled waveforms
are presented, along with a time averaged plot
of amplitude and phase. Phase and amplitude
readings at regular intervals can be saved to a log
file. A spectrum and waterfall of the decimated
waveform appear in a separate window. This
can be set for an FFT size up to 4096 so when
used at the maximum decimation of the input,
could show a spectrum display to a resolution
of 59.6µHz (equivalent to 4.66 hours per plot).

As an example, Figure 3 and Figure 4 show
the 77.5kHz DCF77 time signal transmitted from
Mainflingen in Germany, 735km due East from
me. The capture period covers the transition
from daylight to just after sunset, which at the
time of this plot occurred at 1712UTC here
and 1630UTC at the transmitter. The signal
was captured off-air, decimated to 0.488Hz
sampling rate and filtered to ±0.17Hz, sufficient
to just hide its one-second pulsing. The change
in propagation during the day-night transition is
clearly visible in the plots of amplitude and phase
after 1600UTC.

The spectrum plot in Figure 4 is at 0.00048Hz
resolution (35 minutes per FFT) and clearly
shows the structure in the MSF signal caused by
repeated bit patterns in the timecode common to
each one-minute interval. The resulting spectral
components are at 1/60s = 0.017Hz apart; six
per graticule mark.

Other uses
Apart from viewing narrowband LF signals this
digitiser has uses in the laboratory environment,
especially in the measurement of variations
of frequency and stability of oscillators and
references. While a frequency counter with a
long-enough gate period will show what happens
in the long term, the way a frequency reference
varies over a few seconds or minutes can be
more important if it is to be used to derive a local
oscillator. An alternative version of the software
that was originally written for EbNaut on LF was
generated, geared more towards use for test
and measurement. It allows for, and can ignore,
a signal that does not have valid time stamp
information and file saving has been altered
to make it more test equipment friendly. As an
example, a 10MHz output from a GPS disciplined
oscillator needs to be compared with a reference
caesium source and we are interested in its
stability over a few seconds or tens of seconds.
This is expected to be within a few parts per
billion. The obvious way to compare the two
would be to apply both 10MHz signals to a mixer,
look at the DC component from the IF port and

see how it varies over time. At a few parts-per-
billion frequency variation, any significant drift
over the short term would be small and vary only
slowly. Digitising this for subsequent analysis
would be beset with DC zero / shift problems, as
well as the 0/180° ambiguity within any single-
ended mixer, meaning the direction of relative
frequency shift is unknown.

By coherently converting one of the signals
that are to be compared to a new frequency
1kHz higher (or lower) than the other, this DC
offset and phase ambiguity can be resolved.
The frequency conversion can be done with a
direct digital synthesiser (DDS) with integral
clock multiplier. To maintain sufficient accuracy
a DDS with a 48-bit accumulator is needed.
Assuming a clock multiplication factor of 20
to get a 200MHz DDS clock, any frequency
generated by a 48-bit device such as the AD9852
will have a maximum uncertainty of 200MHz /
248 = 0.7µHz (one cycle every 16 days). If a
32-bit DDS like the AD9851 were to be used,
clocked at 60MHz from its internal multiplier,
the uncertainty could be as high as 0.014Hz
(although this is completely deterministic and
could be catered for [4]). Applying both these
signals to a mixer, the output at 1kHz contains
all the information needed to extract stability data,
with no DC offset and no phase ambiguity. The
1kHz digitiser and supporting software described
does the rest. The plot shown in Figure 5 shows
the result over a 30-minute period for the output
from the GPSDO, converted to 10.001MHz as
described and mixed with the output from a
caesium frequency standard at 10MHz.

Although the average phase is stable over
the 30-minute plot, it does show some rapid
excursions over short periods. One example, at
10:45, shows around 45° of phase shift over a
period of something like 30 seconds. This equates
to a short term frequency shift of 45°/360° / 30s
= 0.004Hz. At 10MHz this corresponds to a
frequency error of 0.4 parts per billion (PPB) for
this time interval, a short term wander typical
of that seen in many commercial GPSDOs. If
required, the decimated waveform can be saved
and subsequently used in a calculation of other
parameters such as the Allen Variance.

Websearch
[1] EbNaut coherent data mode for low

frequencies: http://abelian.org/ebnaut/
[2] SpecLab spectral analysis toolkit:

https://www.qsl.net/dl4yhf/spectra1.html
[3] LF receiver / EbNaut control software:

www.g4jnt.com then follow the links
for ‘DSP Software’

[4] If a 32-bit DDS were to be used as the
reference frequency converter, the setting
uncertainty can be determined precisely,
using the register values sent to the DDS
to calculate the exact frequency generated.
The error from the wanted value can then be
entered into the fine tune box.

