
Introduction
When the fully-coherent slow datamode EbNaut 
[1] started to appear on the LF bands a few years 
ago, users had to be able to receive and record off-
air signals that would remain stable in phase to 
less than a quarter of a cycle over a duration of an 
hour or more. At 137kHz, a quarter of a cycle over 
two hours requires a frequency accurate to 34µHz 
with a long term accuracy better than 2.5x1010. 
The latter requirement is easily met by locking 
the receiver and all frequency converters to a 
common-or-garden GPS-disciplined oscillator or 
a rubidium standard. The absolute accuracy can 
be sorted out in software using FFT techniques on 
a wider bandwidth. The weak point is capturing 
and storing the signal – typically as an audio tone.

A PC soundcard seems the obvious choice 
to record such waveforms out of a receiver, but 
now everything falls apart. The sampling clock 
in most soundcards is usually defined by a low-
cost crystal oscillator, with a typical accuracy 
of perhaps 20ppm (parts-per-million), which 
translates directly to a sampling rate error. An 
error of 20ppm on a 1kHz tone is 0.02Hz – that’s 
20,000µHz – and while this would normally 
go unnoticed by most users, here it makes a 

complete mockery of the micro-hertz accuracy 
needed for EbNaut. 

The users of EbNaut devised a workaround 
to cope with this issue. They used a customised 
version of the SpecLab software [2] that phase-

locked, purely in software, the one pulse-per-
second (PPS) signal from a GPS receiver fed 
into one channel of a stereo soundcard. The 
frequency-converted receive waveform went to 
the other channel. SpecLab could now generate 
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PHOTO 1: 1kHz sampling hardware. There’s an extra opamp gain stage in this version (on the small 
PCB). An internal, switchable, 10MHz oscillator has also been added for non-critical tests when an 
external reference is not available.
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FIGURE 1: Circuit diagram of a 1kHz digitiser for high stability coherent communications and testing.

A 1kHz sampling A/D converter for  
low rate LF data modes and frequency stability testing
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a pseudo sampling clock locked to GPS and then coherently downconvert 
the audio input to a narrow baseband I/Q signal at a sampling rate in the 
region of a few Hz. Another novel quirk was added that allowed the user to 
timestamp each recording; in addition to recording the PPS signal on one 
soundcard channel, the NMEA data stream from the GPS receiver could be 
fed in as well. This somewhat unorthodox route required a special version 
of SpecLab to decode the stored digital stream as well as separate out the 
1 PPS bits and do the phase locking – but it did allow a number of users 
to use the EbNaut suite without having to build any additional hardware.

The resulting I/Q samples were stored as floating point values in a 
customised file that, somewhat amusingly, was given the .WAV file extension 
and even – sort of – followed the rules for such files with regard to metadata 
and headers. The EbNaut receive software worked on these pre-stored low 
data rate samples to extract the really, really, ultra-weak signals buried in 
there. The time stamp was reflected in the file name – all automatically 
generated. I shall refer to these as ‘pseudo-wav files’.

Alternative solution
I never got on with SpecLab (a purely personal issue, mainly down to 
its complexity and ‘feel’; other people love it for its flexibility and utility) 
so I wondered what other alternatives were possible to generate a fully 
compatible pseudo-wav file. Back in the early days of 73kHz experimentation 
in the late 1990s, Peter, G3PLX had suggested to me a way that a PIC 
processor with internal A/D converter could be used to simultaneously digitise 
and downconvert a narrow received waveform centred on 1kHz. The output 
would be a 1kHz sampled baseband I/Q data stream sent to a PC using 
the serial or COM port. The only proviso was that the input frequency band 
must be filtered to keep it within the range 750 – 1250Hz to avoid alias 
products. This filtering requirement was easily met by using a 300Hz CW 
filter in the receiver and setting the BFO tone to 1kHz. Sampling rate and 
stability is now purely a function of the processor clock, which would be a 
quality crystal oscillator or master frequency standard. There was no need to 
rely on uncertain PC timing; the PC just takes serial words when they arrive.

In those days the only suitable PIC processor was the 16C71, which 
had an 8-bit A/D converter and a maximum processor clock speed of 5MHz 
(lower cost versions only offered a 1MHz clock), but either was more than 
adequate for the scheme Peter suggested. It works like this:
• In a software loop, digitise the input waveform at 4kHz, thus generating 

four samples for every one sent at 1kHz. Label these four samples S1, S2, 
S3 and S4, whilst moving the previous value of S4 to variable S4_Last

• Calculate two values, I = S1 + S2 – S3 – S4 and Q = S1 – S2 – S3 
+ S4_Last 

Since each 4kHz sample gives an 8-bit result from the A/D conversion, 
adding these means the resulting I/Q pair each take on a 10-bit value. What 
we have done is to effectively multiply each block of four samples by one 
cycle of a quadrature square wave at 1kHz. Taking the signs of the samples 
in the sums above as ±, the following illustration makes it a bit clearer, 
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showing four cycles of the effective quadrature local oscillator (LO):
++--++--++--++--      and 
+--++--++--++--+

Multiplying an audio or RF input by a digitised I/Q LO to get an I/Q 
baseband output is a standard technique in any SDR to bring the centre 
frequency down to DC. Because we are generating the result at a 1kHz 
sampling rate means, from Nyquist, our maximum bandwidth can only be 
half this, or 500Hz. Hence the 750Hz – 1250Hz limit. Reducing four 8-bit 
samples to one single 10-bit one at a quarter the original sampling rate gives 
another 6dB of dynamic range over that available from the raw digitisation, 
a direct result of down-sampling from 4kHz to 1kHz. 

In those days internal COM ports were standard in PCs. The highest 
speed these could run at was 115200 baud – quite adequate to send several 
bytes of data 1000 times per second to a PC for further processing. The total 
frame length to send four bytes using stop-start signalling at 115200 baud 
is less than 400µs, so there was plenty of leeway at 1kHz sampling. 20 bits 
needed to be transmitted in a frame that would allow for 32, so each pair was 
split into five bits, allocated to each of the four bytes. The remaining three 
bits in each byte were set to different fixed header values so the receiving 
software could quickly identify each one and recombine them properly. 

I built a digitiser using this technique and used it for a number of early 
DSP and coherent receiving experiments, but it was subsequently put on 
one side and forgotten when soundcards became ubiquitous.

An updated version
The need for a highly stable converter with time stamping for EbNaut was an 
ideal opportunity to bring this design up to date. Improved PIC devices now 
included 10-bit A/D converters on the chip and higher processor clock rates. 
10-bit A/D conversion meant the I/Q output samples would now have 12-bit 
resolution, giving a 12dB dynamic range improvement over the old design. 
In spite of there now being a whole range of modern dsPICs and advanced 
16-bit devices to choose from, all the requirements for an upgraded digitiser 
could be met with a basic 16F819 PIC processor. This is itself a bit long in 
the tooth now, but perfectly adequate; it’s an 18 pin device costing less than 
£2 (of which I already had more than a few), with plenty of existing code 
written to just drop in and go. 

Internal COM ports on PCs are rare nowadays, but USB serial interfaces 
such as the FTDI-Chip FT232 device are commonplace and can offer much 

FIGURE 2: Frequency response of the input bandpass filter.

FIGURE 3: Off-air reception of the DCF77 time signal on 77.5kHz over the 
period of sunset. Propagation-induced phase and amplitude shift is clearly visible.
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higher signalling speeds than the 115200 baud limit on the old RS232 
ones. There is also no need for the messy ±12V signalling of RS232. The 
interface to the PC can be, to all intents and purposes, a USB one. Adopting 
the 16F819 did mean, though, there was no internal UART available to 
generate output data. So this would have to be generated by bit-banging in 
the same way as was done for the twenty-year-earlier design. It also meant 
a baud rate significantly greater than 115200 would not be possible; but 
that is more than fast enough. 

As well as digitising the 1kHz-centred input and forming the I/Q data 
values, the new version also had to take a 1 PPS signal, together with NMEA 
time and date from a GPS receiver and merge this into the output stream 
along with the samples. All this meant some ingenuity would be needed 
in the format of the output data stream to ensure data slippages and errors 
in the interface could be easily recovered. The processor clock input would 
come from a 10MHz master frequency reference oscillator, resulting in a 
2.5MHz internal processor clock rate; significantly faster than the original 
version. so allowing more processing to be done on each sample if needed.

Comms protocol and time tagging
The IQ Data appears every 1ms as two twelve bit numbers whose 
individual bits are labelled here:
IIIIIiiiiiii and QQQQQqqqqqqq

These are split into four 8-bit bytes, each pair containing respectively 7 
and 5 bits of the I or Q value. Header bits are added to make up a complete 
byte in each case, and these transmitted on the serial interface sent in this 
format and order:
0iiiiiiii 100IIIII 0qqqqqqq 101QQQQQ 

The receiving software knows that any byte with a leading 0 contains 
the lower significant bits that will be appended to the next one(s). A byte 
starting ‘100’ is defined as the high order bits of the I data, is merged with 
the previous one and forms that value. The same applies for the Q data when 
a byte beginning with the pattern ‘101’ appears. Thus, if any data slippage 
or fail should occur, there is enough information in each frame of four bytes 
to recover immediately.

Time tagging is added to this in the form of extra bytes transmitted every 
second, ie once in every 1000 samples. As the PIC code already contains a 
timing function controlled from a high accuracy reference clock, it would be 
frivolous to waste time and effort continuously reading the GPS data stream 
every second. Instead, the GPS date and time is read once at turn-on and 
stored; this value is then updated every second in the PIC firmware by a 
clock / calendar routine synchronised at the start to the 1PPS signal from the 
GPS. Once internal timekeeping is synchronised the GPS receiver becomes 
redundant and could, if desired, be turned off to save power.

FIGURE 5: Comparison of the 10MHz from a commercial GPS Disciplined 
oscillator with that derived from a caesium beam frequency standard.

Every second, synchronised to the UTC seconds epoch, the binary values 
for the time and date are transmitted as additional bytes just after the Q data 
has completed. In total, a block of six additional bytes needs to be sent every 
second for the full epoch, but these have to be spread out to keep the total 
number of bytes within any 1ms frame down to 8 or fewer. 

The first part of the additional data contains binary values for UTC 
seconds, minutes (shown as ‘n’), hours and the day of the month, coded as:
00ssssss 00nnnnnn 000hhhhh 111ddddd 

Once again, a byte beginning with a ‘0’ has no meaning on its own. The 
‘111’ header on the final byte of the four indicates to the receiving software 
this is the first part of a time stamp and has to be combined with the 
preceding three. This block of four is sent immediately after the UTC seconds 
epoch. 32ms later two more bytes are appended at the end of a frame of Q 
data, containing binary values for the short-year and month in the format:
0yyyyyyy 1100mmmm 

The ‘110’ header is the unique label for this frame. So now the receiving 
software can determine each sample to a time resolution of 1ms from UTC 
/ GPS time and can get a timestamp update within one second of acquiring 
the data stream. Any sample with the first part of the time tag (header ‘110’) 
sits at the 0.000 seconds of the time/date epoch coded within the next few 
blocks. Knowing this, the exact timing of each sample can be determined 
to 1ms precision.

Hardware
Figure 1 shows a circuit diagram of the complete digitiser shown in Photo 1. 
Apart from the PIC doing all the work, there is a bandpass filter to limit the 
audio bandwidth going into the A/D converter and a driver for RS422/485 
twisted pair, described later. A dual colour LED driven from the PIC allows 
the input level to be set correctly, showing when overload or A/D clipping is 
about to occur. It also shows if the reference is not connected at turn on by 
lack of illumination when power is applied. A flash pattern indicates that no 
GPS data or PPS is being received. NMEA data and the 1PPS come from 
a separate GPS/GNSS module, not shown, which can be either external to 
this unit or built into the same hardware.

A three-stage opamp bandpass filter limits the amplitude of frequencies 
outside the alias band. This also provides a useful amount of audio gain, 
allowing input signals of a few hundred mV to get to full scale on the 
ADC. Figure 2 shows the simulated response of this filter with all three 
stages tuned to exactly the same frequency. As the unit is designed for low 
bandwidth modes of perhaps just a few tens of Hz, the response does not 
have to be too carefully tailored and the three stages can simply be tweaked 
for something approaching what is needed. Stagger-tuning will widen the 
response if desired, at the expense of lower out-of-band rejection. As can 

FIGURE 4: Narrowband frequency spectrum from the DCF77 transmitter 
showing spectral components due to the one-minute timeframe.
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be seen from the simulation, rejection at the edge 
of the alias band is around 40dB worst case, 
increasing monotonically beyond this. Since, in 
practice, only frequencies a few tens of hertz 
either side of 1kHz centre will be of interest 
for experiments or modes using this interface, 
alias products falling into this wanted region 
around 1kHz would have to be at 2kHz, 3kHz 
etc, where attenuation is considerably higher. If 
the audio input is derived from a receiver with a 
narrow CW filter, the opamps can be dispensed 
with and audio applied directly to the PIC input, 
biased to centre rail, via a gain-stage if necessary. 
The nature of the summation of the four A/D 
values means that any DC offset is automatically 
removed on the final value, so the mid rail voltage 
does not have to be trimmed too precisely. 

Computer interfacing
The RS232 interface used on the original version 
with its need for ± voltage signalling is not being 
considered here. The simplest solution now is 
to connect the data output pin from the PIC 
directly to the serial input of an FT232R chip, or 
whatever USB COM port device is chosen. A direct 
connection, however, is not the best solution. USB 
connections are not all that electrically quiet and 
frequently conduct unwanted RF signals from the 
PC chassis to the target, either differentially along 
its unbalanced 5V DC supply, or by common 
mode injection. 

A better solution, shown here, is to adopt 
differential signalling on twisted pair using 
RS422/485 levels. The USB connection to the PC 
(now a RS485 USB module) is plugged directly 
into the PC, keeping its interference at home. 
Having no common connection or ground, the 
twisted pair cannot introduce ground loops and is 
immune to common mode interference in either 
direction. Furthermore, it is easy to add filtering 
to reject common mode RF signals by wrapping 
several turns of the thin twisted pair around a 
suitable ferrite toroid.

For an even more interference-free connection, 
an optical fibre based solution could be adopted, 
or an RF one using low cost 432MHz modules. 
Such interfaces could be considered if the digitiser 
were used as a remote receiver in a quiet location, 
well-away from local electrical noise sources.

PC software
With a customised interface such as this, bespoke 
software is needed to receive and decode the 
serial data stream. COM ports are well supported 
in all computer languages and are usually easier 
to drive and set up than any other I/O mechanism. 
Software at [3] written in VB6 contains a package 
that will read the data stream and extract the 1kHz 
I/Q samples and time stamp. The signal is filtered 
and decimated by a user defined value between 
4 and 4096 to give an I/Q steam at a sampling 
rate that can go down to 0.244Hz. A frequency 
offset (any arbitrary floating point value) can be 

added to the signal before decimation to allow, for 
example, a receiver limited to 1Hz tuning steps or 
the error introduced by a low resolution DDS used 
as a receiver’s LO to be corrected. The resulting 
slow rate I/Q data can then be saved as time-
scheduled pseudo-wav files, automatically named 
from the time stamp, in the format required by 
the EbNaut receive software. Vector displays 
of the raw input and the resampled waveforms 
are presented, along with a time averaged plot 
of amplitude and phase. Phase and amplitude 
readings at regular intervals can be saved to a log 
file. A spectrum and waterfall of the decimated 
waveform appear in a separate window. This 
can be set for an FFT size up to 4096 so when 
used at the maximum decimation of the input, 
could show a spectrum display to a resolution 
of 59.6µHz (equivalent to 4.66 hours per plot). 

As an example, Figure 3 and Figure 4 show 
the 77.5kHz DCF77 time signal transmitted from 
Mainflingen in Germany, 735km due East from 
me. The capture period covers the transition 
from daylight to just after sunset, which at the 
time of this plot occurred at 1712UTC here 
and 1630UTC at the transmitter. The signal 
was captured off-air, decimated to 0.488Hz 
sampling rate and filtered to ±0.17Hz, sufficient 
to just hide its one-second pulsing. The change 
in propagation during the day-night transition is 
clearly visible in the plots of amplitude and phase 
after 1600UTC.

The spectrum plot in Figure 4 is at 0.00048Hz 
resolution (35 minutes per FFT) and clearly 
shows the structure in the MSF signal caused by 
repeated bit patterns in the timecode common to 
each one-minute interval. The resulting spectral 
components are at 1/60s = 0.017Hz apart; six 
per graticule mark. 

Other uses
Apart from viewing narrowband LF signals this 
digitiser has uses in the laboratory environment, 
especially in the measurement of variations 
of frequency and stability of oscillators and 
references. While a frequency counter with a 
long-enough gate period will show what happens 
in the long term, the way a frequency reference 
varies over a few seconds or minutes can be 
more important if it is to be used to derive a local 
oscillator. An alternative version of the software 
that was originally written for EbNaut on LF was 
generated, geared more towards use for test 
and measurement. It allows for, and can ignore, 
a signal that does not have valid time stamp 
information and file saving has been altered 
to make it more test equipment friendly. As an 
example, a 10MHz output from a GPS disciplined 
oscillator needs to be compared with a reference 
caesium source and we are interested in its 
stability over a few seconds or tens of seconds. 
This is expected to be within a few parts per 
billion. The obvious way to compare the two 
would be to apply both 10MHz signals to a mixer, 
look at the DC component from the IF port and 

see how it varies over time. At a few parts-per-
billion frequency variation, any significant drift 
over the short term would be small and vary only 
slowly. Digitising this for subsequent analysis 
would be beset with DC zero / shift problems, as 
well as the 0/180° ambiguity within any single-
ended mixer, meaning the direction of relative 
frequency shift is unknown.

By coherently converting one of the signals 
that are to be compared to a new frequency 
1kHz higher (or lower) than the other, this DC 
offset and phase ambiguity can be resolved. 
The frequency conversion can be done with a 
direct digital synthesiser (DDS) with integral 
clock multiplier. To maintain sufficient accuracy 
a DDS with a 48-bit accumulator is needed. 
Assuming a clock multiplication factor of 20 
to get a 200MHz DDS clock, any frequency 
generated by a 48-bit device such as the AD9852 
will have a maximum uncertainty of 200MHz / 
248 = 0.7µHz (one cycle every 16 days). If a 
32-bit DDS like the AD9851 were to be used, 
clocked at 60MHz from its internal multiplier, 
the uncertainty could be as high as 0.014Hz 
(although this is completely deterministic and 
could be catered for [4]). Applying both these 
signals to a mixer, the output at 1kHz contains 
all the information needed to extract stability data, 
with no DC offset and no phase ambiguity. The 
1kHz digitiser and supporting software described 
does the rest. The plot shown in Figure 5 shows 
the result over a 30-minute period for the output 
from the GPSDO, converted to 10.001MHz as 
described and mixed with the output from a 
caesium frequency standard at 10MHz.

Although the average phase is stable over 
the 30-minute plot, it does show some rapid 
excursions over short periods. One example, at 
10:45, shows around 45° of phase shift over a 
period of something like 30 seconds. This equates 
to a short term frequency shift of 45°/360° / 30s 
= 0.004Hz. At 10MHz this corresponds to a 
frequency error of 0.4 parts per billion (PPB) for 
this time interval, a short term wander typical 
of that seen in many commercial GPSDOs. If 
required, the decimated waveform can be saved 
and subsequently used in a calculation of other 
parameters such as the Allen Variance. 

Websearch
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frequencies: http://abelian.org/ebnaut/
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[4] If a 32-bit DDS were to be used as the 
reference frequency converter, the setting 
uncertainty can be determined precisely, 
using the register values sent to the DDS 
to calculate the exact frequency generated. 
The error from the wanted value can then be 
entered into the fine tune box.


